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Dynamics and sound emission of a spherical 
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The effect of polymer additive on the growth and collapse of a spherical vapour 
bubble is investigated theoretically, under conditions appropriate for cavitation 
(negligible influence of heat transfer, Newtonian viscosity, etc.). The polymer- 
induced stress is calculated using the yo-yo model of the polymer dynamics in 
transient extensional flows (Ryskin 1987 a).  The resulting equation of bubble 
dynamics is solved numerically ; an approximate analytical solution is also obtained. 
It is found that the growth of a bubble is not affected by the polymer, but the final 
stage of the collapse is. After following closely the classical inviscid-fluid solution, the 
collapse is abruptly arrested, and the bubble wall velocity is reduced to nearly zero. 
The peak acoustic pressure of the radiated sound is also reduced, and the high- 
frequency part of the acoustic spectrum is sharply curtailed. 

1. Introduction 
The effect of polymer additives on cavitation has been studied for about 20 years, 

beginning with the papers of Ellis & Hoyt (1968), Ellis, Waugh & Ting (1970) and 
Fogler & Goddard (1970). The experiments of Ellis & Hoyt (1968) and Ellis et al. 
(1970) demonstrated that addition of minute amounts of flexible long-chain 
polymers, of drag-reducing type, could significantly suppress cavitation, i.e. reduce 
the incipient cavitation number by a factor of 2 to 3, in high-speed flows past 
hemispherically nosed bodies. Fogler & Goddard (1970) analysed theoretically the 
collapse of a spherical bubble in a linear viscoelastic (Maxwell) fluid and concluded 
that elasticity of the fluid could significantly retard the collapse, the bubble motion 
becoming oscillatory in character, i.e. consisting of a series of collapses and rebounds, 
modified by viscous damping. 

Further work showed that polymer additives also suppress cavitation in a jet flow 
(Hoyt 1976; Hoyt & Taylor 1981), in a single-vortex flow (Hoyt 1978), and in a 
rotating-disc flow (Ting 1978) ; they also suppress acoustic cavitation (Hoyt 1977 ; 
Crum & Brosey 1984) and strongly influence cavitation damage and noise (Ashworth 
& Procter 1975; Shima et al. 1985; Nanjo, Shima & Tsujino 1986; Oba, Ito & 
Uranishi 1978; Reitzer, Gebel & Scrivener 1985; Tsujino 1987). However, the 
connection between these phenomena and the effect of polymer on the dynamics of 
a single bubble remained elusive. 

The experimental work is severely complicated by the fact that the polymer 
additive also changes the overall flow field and thus creates different conditions for 
cavitation. In fact, it was shown by van der Muelen in 1976, and independently by 
Gates in 1977 (see Arakeri & Acosta 1981 for references and discussion), that the 
suppression of cavitation in flows past hemispherically nosed bodies is due to this last 
effect, viz. the polymer alters the structure of the boundary layer, leading to an 
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earlier transition to turbulence and elimination of laminar separation. This delays 
the cavitation inception since the region of reattachment of the separated laminar 
boundary layer is the critical zone for cavitation inception due to intense pressure 
fluctuations there (Arakeri & Acosta 1981). 

Furthermore, the experiments with individual bubbles (Ting & Ellis 1974 ; Chahine 
& Fruman 1979; Kezios & Schowalter 1986) showed no effect of polymer on the 
dynamics of a spherical bubble, while the theoretical analyses of Ting (1975, 1977), 
who used the Oldroyd constitutive relation, and of Hara & Schowalter (1984), who 
used the Maxwell one but in convected (Lagrangian) coordinates, predicted that the 
polymer effect will be negligible for the values of the parameters (Deborah number, 
etc.) that could be encountered in cavitation. (In fact, the results of Hara & 
Schowalter 1984 show no effect of rheology on the collapse of a spherical bubble for 
the values of Deborah number up to lo5.) 

At the moment, the consensus appears to be that the dynamics of a spherical 
cavitation bubble is practically unaffected by polymer additive, and that the strong 
influence of polymer on the cavitation phenomena is due to the alteration of the 
overall flow field, as well as to the polymer effect on the dynamics of non-spherical 
bubbles (Chahine 1982 ; Kezios & Schowalter 1986). 

The purpose of the present work is to investigate the polymer effect on the 
dynamics of a spherical cavitation bubble using the yo-yo model of polymer 
dynamics (Ryskin 1987a). In brief, the yo-yo model says that a polymer chain, 
subjected to an elongational flow with a strain rate above, approximately, the 
inverse of the polymer relaxation time, will begin to unravel ; soon thereafter within 
the unravelling chain at  least one large chain segment will be stretched taut. This 
segment will then remain taut and continue to grow a t  the expense of the adjoining, 
still coiled portions of the chain at its ends; the latter portions will be moving apart 
with the flow, simultaneously diminishing in size. If the flow later becomes weak, the 
chain will curl back into a coil. The taut central portion generates large additional 
stress via a dissipative mechanism. 

It is important to keep in mind that the yo-yo model is not intended to describe 
the polymer dynamics in detail. Indeed, one can easily visualize some likely features 
of the actual dynamics which are not reflected in the yo-yo model (e.g. several 
segments of the chain may be unravelling in parallel, etc.). However, the yo-yo model 
is so constructed that these details of the polymer dynamics become unimportant 
(Ryskin 1987a; see especially pp. 426428, 438). 

The model has been successful in explaining some laminar flow experiments 
(Ryskin 1987a), as well as the turbulent drag reduction phenomenon (Ryskin 1987b). 
Of course, more flow situations will have to be analysed and compared with 
experiments before the validity (or invalidity) of the yo-yo model can be established. 

Most of the works concerned with fluid dynamics of non-Newtonian fluids utilize, 
in addition to the mass and momentum conservation laws, constitutive equations, 
which allow one, in principle, to calculate the stress, given the history of the strain 
rate in a fluid element. It is rather obvious that none of the existing constitutive 
equations could describe the rheology of a solution in which polymer molecules 
behave according to the yo-yo model, owing to the non-smooth (on-off) character of 
the polymer contribution to the stress (see Ryskin 1987a). A new general constitutive 
‘rule’ could be derived on the basis of the yo-yo model (plus, perhaps, some 
additional assumptions), though this rule would certainly not have the form of a 
differential equation. One could then use this rule to solve fluid dynamics problems, 
including the one at  hand. 
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However, the problem considered here is such that it can be solved using the 
molecular model directly. Such a ‘ molecular ’ approach, linking directly molecular 
dynamics on the microscale with fluid dynamics on the macroscale, offers two 
benefits: first, the physics of the problem is made quite clear; second, only those 
assumptions are made, in addition to the yo-yo model itself, which are absolutely 
necessary for advancing the solution. 

What follows is an application of this approach to the problem of cavitation 
bubble dynamics. 

2. The general equation of bubble dynamics 
The basic equation of bubble dynamics in an incompressible non-Newtonian fluid 

has been derived by Fogler BE Goddard (1970), following the previous derivations for 
an inviscid fluid by Besant (1859) and by Rayleigh (1917) and for a Newtonian fluid 
by Plesset (see Plesset & Prosperetti 1977). This basic equation is 

where R is the radius of the bubble, a dot means differentiation with respect to time, 
p is the density of the liquid, pi and pa,, are the pressures inside the bubble and in 
the liquid far from the bubble, respectively, CT is the surface tension, r is the radial 
coordinate, and 7,, is the indicated component of the deviatoric stress tensor 2 ;  the 
full stress tensor is given by - p / + z  and Tr (2) = 0. 

In what follows we assume that both pamb and pi are constant. The constancy of 
pi is a good approximation for the case of a bubble filled with vapour only (i.e. no 
non-condensable gas), a t  least until the velocity8 of the wall of the collapsing bubble 
becomes comparable with the speed of sound in the vapour, in which case the vapour 
does not have enough time to condense, and its pressure begins to rise (see Plesset & 
Prosperetti 1977). Thus in the present work p ,  = p,, where the equilibrium vapour 
pressure p ,  is a function of temperature only; e.g. for water at  15 OC, p ,  = 
1.7 x lo4 dyn/cm2 x 0.017 atm. 

Condensation of the vapour (during collapse), or evaporation of the liquid (during 
growth), that must occur in order to keep the vapour pressure inside the bubble at 
its equilibrium value, entail heat transfer since the latent heat associated with the 
phase transition must be removed or delivered. This heat transfer may influence the 
bubble dynamics very strongly, and is, in fact, a controlling factor in boiling. 
However, its importance depends crucially on the equilibrium vapour density, and 
when the latter is relatively small (‘cold’ liquid), the thermal effects can be neglected. 
Such is the case for a cavitation bubble (Plesset & Prosperetti 1977) ; we thus neglect 
thermal effects in the present work. 

Consider now the surface-tension effect. The magnitude of the surface tension is 
certainly important in determining whether a given nucleus begins to grow : for given 
p,-pamb, the nucleus radius must be greater than the critical value R, such that 

However, if the growth begins, the influence of the surface tension term quickly 
diminishes owing to its inverse dependence on radius; if the initial radius was 
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substantially greater than R,, the influence of the surface tension is negligible from 
the very beginning. 

In the case of a collapsing bubble, the surface tension term is typically small 
compared to pamb-pv at the initial stages of the collapse since R is relatively large 
then : note that for pamb -p,  = 1 atm and cr = 70 dyn/cm, the bubble radius must be 
O( 1 pm) in order for the surface-tension term to be comparable with the pressure- 
difference term. By the time the radius of the collapsing bubble gets so small, other 
assumptions (stated above or implied) are likely to break down : the velocity R may 
become comparable with the speed of sound in the vapour, so pi is no longer equal 
to p,; it may further become comparable with the speed of sound in the liquid, in 
which case the latter cannot be considered incompressible ; finally, the assumption of 
the spherically symmetric motion becomes invalid owing to shape instabilities 
(Plesset & Prosperetti 1977). Moreover, both the pressure-difference term and the 
surface-tension term become negligibly small in comparison with the inertial terms 
at this stage of the collapse (see 45). 

It is clear then that in many realistic situations the surface-tension effects are 
likely to be unimportant. In order to concentrate on the main topic of the present 
work - the influence of polymer additive - we shall neglect the surface-tension effects 
here. 

The basic equation then takes the form 

p(Rx -!- @') = p ,  -pamb -k 3 1: 7,, T dr. (2.1) 

The effect of rheology of the liquid is described by the last term in (2.1). In the 
absence of polymer, i.e. in the Newtonian solvent alone, this term reduces to 

where qs is the solvent viscosity. 
The Newtonian viscous effect described by (2.2) is normally negligible in the 

dynamics of cavitation bubbles (see Plesset & Prosperetti 1977; see also the 
discussion near the end of 45 of the present paper). Thus, if we find below that in a 
particular motion the effect of polymer additive is comparable with, or less than, the 
purely viscous effect due to the solvent alone, we shall consider the polymer additive 
effect to be unimportant. 

3. Polymer effect in an extensional flow 
Here we recall what the yo-yo model predicts for the polymer effect in an 

extensional flow with given kinematics. The dynamics of a spherical bubble involves 
only two types of flow, both having spherical symmetry : the diverging (point source) 
flow in the case of growth, and the converging (point sink) flow in the case of collapse. 
In the Lagrangian frame of a fluid particle the velocity field is an extensional flow, 
with the rate-of-strain tensor 
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where the principal direction 1 is along the streamline. The principal strain rate 
E,, = E,, = E is given by 

E = -2-. (3.1) 
R2R 

r3 

A rheologist would say that uniaxial extension ( E  > 0) obtains in collapse, while 
biaxial extension (E  < 0) obtains in growth. In both cases, however, the symmetry 
of the rate-of-strain tensor remains the same, namely, the tensorial structure of E is 
that of a uniaxial deviator. (The meaning of the term ‘uniaxial’ in rheology is, 
obviously, narrower.) That is, E defines a single direction in space (this would not be 
the case if all three principal values of E were different, as they are, for example, in 
a two-dimensional straining motion, i.e. a hyperbolic flow). This single direction 
must then determine the structure of the additional deviatoric stress due to polymer 
molecules z‘. This means that (when € has a tensorial structure of a uniaxial 
deviator) z‘ may be written 

2’ = 2@,1, E, 

where is the ratio of the contributions to the bulk deviatoric stress due to the 
presence of the macromolecules and due to the pure solvent. The combined 
deviatoric stress due to the Newtonian solvent and the polymer molecules together 
is then 

z = 27/,€+2’ = 2(1+!3?j,E. 

The value of y is, however, determined somewhat differently in two cases E > 0 
and E < 0. Let us denote 5 in the former case as 5, and in the latter as [-. The former 
case was considered in detail in Ryskin (1987 a) ; the result is 

c+ = KE3, 

where K w 0.3c[q], c is the polymer concentration by weight, and [q] is the intrinsic 
viscosity. The numerical factor 0.3 is actually a very weak (logarithmic) function of 
c[q],  see equation (5)  of Ryskin ( 1 9 8 7 ~ ) .  

The variable 6 is the relative elongation of a material line element directed along 
the stretched polymer chains, from the point where the supercritical unravelling of 
the macromolecules began. This critical point is defined by the condition that there 
E = E,,, where the critical strain rate E,, is related to the longest relaxation time of 
the macromolecule T~ via the coil-stretch criterion 

E,,71 = O(1).  

The general evolution equation for a material line element is well known (see e.g. 
Batchelor 1967, p. 132), but will not be needed here since the element in question is 
always lying along the radial direction 1 and so f is easily calculated (see (5.4) below). 

Consider now the E < 0 case. This case is significantly more complicated. Unlike 
in the E > 0 case, where it was clear that the polymer chains are stretched along the 
principal direction 1, here all the directions of stretching in the plane normal to 1 are 
equally probable. Exactly how this symmetry is broken, and whether this may lead 
to the violation of the assumed spherical symmetry of the kinematics, is beyond the 
scope of this paper. We shall simply assume here that in different fluid elements the 
directions of stretching may be different, and that the resulting stress z’ is the 
average of the stress tensors that would result from stretching in all these possible 
directions with equal probability. Then z’ will have the symmetry of a uniaxial 
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deviator and thus can be found as the half-sum of the stress tensors that would result 
from stretching in any two mutually perpendicular directions among the above 
possible ones. These two directions can be taken, without loss of generality, as the 
principal directions 2 and 3 of E. The general expression for the polymer-induced 
stress is (see Batchelor 1971 and Ryskin 1 9 8 7 ~ )  

T’ = 3 ~ [ ~ 7 ~ n * E * n ( n @ n - $ / ) ,  

where n is a unit vector directed along the stretched polymer chains. 
We thus write, for a given relative elongation E,  

T’ = l(7’ +f’ 
2 (2) ( 3 ) ) )  

T ; ~ )  = 2 ~ ( ~ y , E ~ ~  

and 

The result is 

which means that [- = i K E 3 .  

The variable E is here the relative elongation of a material line element lying in the 
plane normal to the direction 1, from the critical point where E = -2E,,. 

We are now in a position to  calculate the stress for both the growth and the 
collapse phases of bubble dynamics. But first let us summarize the governing 
equations. 

The basic equation of bubble dynamics is (equation (2.1)) 

The initial conditions, in both the growth and the collapse cases, are 

R=R,; R = O  a t  t = 0 .  

Growth will occur if pa,, < p,, and collapse if pa,, > p,. 
As mentioned earlier, the Newtonian viscous stress has negligible influence on the 

dynamics of cavitation bubbles. Therefore, its contribution to r,, will be neglected, 
and only the contribution due to polymer will be taken into account, i.e. 

T r ,  = Ti, = 2&,E. 

where 6 is the relative elongation of a material line element normal to the radial 
direction, from the critical point where E = -2E,,; 

R2R 
r,, = - 4 ~ [ ~ 7 ~  - 

r3 ’ (a) in collapse : 
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where 5 is the relative elongation of a material line element lying along the radial 
direction, from the critical point where E = Ecs. 

The growth and the collapse of a cavitation bubble are analysed below, in this 
order (chosen to reflect the ‘life cycle’ of the bubble). The reader should be warned, 
however, that  the main result in the case of the growth is the prediction of no 
observable influence of the polymer additives on dynamics (at any rate, no more than 
that of the Newtonian viscosity). Some readers may thus choose to skip the section 
on growth altogether. 

4. The growth of a bubble 

With the viscous effects neglected, the basic equation (2.1) reduces to 
Let us first recall the solution of this problem in the case of a Newtonian fluid. 

P ( R R + s 2 )  = Pv-pamb. 

This can be integrated once to give (see e.g. Plesset & Prosperetti 1977; here the 
subscript zero signifies the initial conditions, and the initial velocity of the bubble 
wall R, is taken to be zero) 

That is, after a short initial period during which R 5 2R,, the velocity of the bubble 
wall is practically constant and equal to its asymptotic value for the growth phase 

For example, for pv-pamb = 1 bar = lo6 dyn/cm2 (= 0.987 atm) and p = 1 g/cm3, 
R, = 816 cm/s. 

The principal rr value E of the rate-of-strain tensor is negative ; as can be seen from 
(3.1), a t  any given moment the maximum absolute value of E is reached a t  the 
surface of the bubble 

R 
lEIR = 2 -. R 

Clearly, lEIR as a function of time is 0 a t  the beginning of the growth, then quickly 
reaches some maximum value as R approaches Rm while R is still of order R,, and 
then enters the asymptotic regime, diminishing with time approximately in inverse 
proportion to the bubble radius. The maximum value of IEl over the whole growth 
phase is thus of the order 

Now, if this maximum value is less than the critical value 2E,,, no polymer chains 
will be stretched. We thus observe that the behaviour of the polymer during the 
growth of a cavitation bubble should be determined by the dimensionless parameter 
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so that for a 5 1 the polymer effect is absent, while for a 9 1 i t  may be important. 
Note also that 

Consider now a bubble growing in a dilute polymer solution, in the case where a 
is sufficiently large that the coil-stretch (CS) events do occur. The polymer effect on 
the bubble dynamics will be described by the last term in (2.1), i.e. (neglecting the 
Newtonian viscous stress) 

where 6 is the relative elongation of a material line element, lying in the plane normal 
to the radial direction, from the critical point where E was equal to -2E,,. Denoting 
the position of this point as re,, we have 

[=L 
rcs  

since as a thin spherical shell of fluid expands, each line element in its tangential 
plane grows as r (and so its area grows as r 2 ) .  Thus the last integral in (4.5) is 

To evaluate the integral, we need to  know r,, as a function of r (the current position 
of the fluid element) ; this function is, however, different for different fluid elements, 
i.e. T,, is a function not only of T but also of time. The task seems formidable a t  first ; 
i t  can, however, be accomplished, at the price of introducing some reasonable 
approximations, as follows. 

4.1. Calculation of the position of the critical point 
Let us label each fluid element by its initial (at time zero) position, denoted r,,. 
Conservation of the volume of liquid within a spherical material surface passing 
through this fluid element gives 

r3-R3 = r:-R:. (4.7) 

The rate of strain in this fluid element is then given by 

Note that this is a function of ro and time (via R and R ) .  
Consider first the simplest case of extremely low polymer concentration, so that 

the influence of the polymer on the kinematics is very small. Then to a first 
approximation we can use the inviscid-fluid solution (4.1) to find the maximum value 
of IEl ever experienced by a particular fluid element; if this value is less than 2E,,, 
the CS event never occurs in this fluid element. 

We thus need to find the value of R a t  which the expression 

R2 [l-(E$] 
ri -Ri +R3 



A spherical cavitation bubble in a dilute polymer solution 247 

is at maximum. It is easy to show that this value is R = X ~ R , ,  where x satisfies the 
quadratic equation 

and is well approximated by 

Thus the value of R when IEl reaches its maximum is given by 

R3 x 2 4  +0.5Ri7 

and the fluid element labelled ro, in which this maximum is reached, at this moment 
is located at r ,  given by 

r3 x 3ri-0.5Ri x 1.5R3- 1.25R;. 

Let us now determine ern such that the CS events occur in all fluid elements with 
labels ro < riirn, but do not occur in fluid elements with ro > rfm. To simplify things 
a little, we assume that rtm is not too close to R, (otherwise the polymer chains would 
stretch only in the immediate vicinity of the bubble and their effect would likely be 
negligible). As soon as r, is about 2R, or larger, the last expression can be rewritten 

(4.8) 
as 

r3 x 3ri x 1.5R3. 

Now r?" will be determined by the condition that the maximum value of \El in the 
fluid element labelled rfrn is equal to 2Ecs. For any ro R. 2R,, the maximum value of 
IE( can be written as (see (3.1) and (4.8)) 

(4.9) 

since by the moment this value is reached, R > 2.5RO7 and the bubble wall velocity 
R has practically reached its asymptotic value (4.2). 

Thus we obtain 

and so 
rlim 

0 = 0.43a, 
RO 

this result being reasonably accurate for a > 5. 
By the definition of rtm, the CS event occurs in the fluid element labelled rt" a t  

the moment when IEl there reaches its maximum value, and so for this fluid element, 

by (4.% rcs x 1.44rt". 

In a fluid element with label r, < rtrn the CS event occurs before this fluid element 
reaches the position where its strain rate is a t  maximum : the latter, being inversely 
proportional to ro (see (4.9)), is higher than 2Ecs7 so that the critical value for the CS 
event is reached earlier. In  fact, for large a, rCs for the fluid elements with labels 
ro 4 rkim will be just slightly above ro. 

We shall assume in what follows that rcs = ro for all fluid elements where the CS 
event occurs. This will simplify things greatly, but has an effect of slightly 
exaggerating the polymer stress, for example, the value off; in the fluid element with 
the label riim becomes 1.44 (instead of 1) a t  the moment of the true CS event, i.e. the 
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beginning of the supercritical unravelling. The difference, however, is not too large, 
especially if one takes into account the unavoidable uncertainty in determination of 
the exact moment of the CS event, as well as of the hydrodynamically effective 
length of the polymer chain a t  this moment (see Ryskin 1 9 8 7 ~ ) .  

4.2. The magnitude of the polymer eflect 
Now we can calculate the integral in (4.6), namely 

where 

iim iim 
* dr dr 

IRZ=L r(r3-R3+R3'  

(y1im)3 = ( T ~ ~ ) ~ - R : + R ~ .  

Taking into account that  our derivation is valid for R > 2.5R0 (note that a t  earlier 
moments fl  is certainly less than 2.5 everywhere and so the polymer stress cannot be 
significant), we obtain the following value for this integral : 

L log [ (~c)~ + ( LJ]-' 
R3 0 . 4 3 ~  ' 

and so the term in (2.1) due to  the polymer effect is given by (see (4.5)) 

The ratio of this polymer contribution to the one due to the Newtonian solvent, 
equation (2.21, is 

The log-factor is a t  maximum when R + CQ, so this ratio is not larger than 

2K log 0.43a. 

An upper limit on a can be estimated by taking p,-pPamb = 100 bar; R, = 1 pm, and 

a = lo6 
= lO-'s. Then (4.4) gives 

and l o g 0 . 4 3 ~  % 13. 
On the other hand, K x 0.3c[q] ,  where c[q ]  must be significantly less than 1 in order 

for the polymer solution to be dilute (c[q] is essentially c /c* ,  where c* is the overlap 
threshold, see de Gennes 1979). We thus conclude that, somewhat surprisingly, the 
polymer effect on the dynamics of a growing cavitation bubble is a t  most of the same 
order of magnitude as the Newtonian viscous effect, and so can be safely neglected. 
Note that even though our derivation assumed that the polymer effect on kinematics 
is small, the above conclusion is independent of this assumption: the polymer can 
only slow down the bubble growth, thus decreasing the rate-of-strain values 
everywhere. This will have an  effect of delaying the CS events in some fluid elements 
and eliminating them altogether in others. This means that our results provide an 
upper limit for the magnitude of the polymer effect. 

Qualitatively, the effect of polymer is negligible during the growth of a bubble 
because in the beginning of the growth, when the strain rates are still high, the 
polymer chains are only slightly elongated ; they do reach high elongations later on, 
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but by that time the strain rates drop. As a result, the polymer-induced stresses are 
never large. 

Experimentally, no influence of polymer additives on bubble growth has ever been 
observed ; reliable observations are very difficult, however. 

5. The collapse of a bubble 

small last term in (2.1). We have (see e.g. Plesset & Prosperetti 1977) 
Let us first recall the classical solution, corresponding to the case of a negligibly 

where the subscript '0' means at time zero, which in this case is taken to correspond 
to the beginning of collapse. The bubble wall velocity R+ co as R+O; nevertheless, 
the 'inertial' velocity scale can be identified as 

Dividing the initial radius of the bubble by this quantity, we obtain the collapse 
timescale 

T C O l l  = &(, )i. 
amb-Pv 

The classical result, obtained by integrating (5.1), predicts that the total collapse 
(R = 0) will occur at the moment 0 . 9 1 5 ~ , ~ , ,  (see e.g. Plesset & Prosperetti 1977; 
Batchelor 1967, 56.12). 

The ratio of the relaxation time of the macromolecule to the collapse timescale, 
T ~ / T ~ ~ ~ ~ ,  or, more precisely, the quantity 

will play an important role in the subsequent analysis. Note, however, that the 
significance of this quantity is quite different from that of its counterpart (4.3) in the 
growth case: in the latter 

Pv-Pamb 

Ro -( P ) 
provided an estimate of the maximum rate of strain reached during the entire growth 
process, while here 7& provides an estimate of the rate-of-strain values reached soon 
after the beginning of collapse, the rate-of-strain magnitude becoming very large as 
the collapse proceeds and R+O. 

We can now proceed to the calculation of the polymer-induced stress. We have for 
the last term in (2.1), neglecting the Newtonian contribution, 

where E; is the relative elongation of a material line element, lying along the radial 
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direction, from the critical point where E was equal to Ecs. Denoting the position of 
this point as rcs,  we have 

2 E=P), (5.4) 

since as a thin spherical shell of fluid contracts towards the origin r = 0, its area 
decreases as r2,  and thus its thickness must increase as rP2.  Thus the last integral in 
(5.3) is 

(5 .5)  

The value of rcs is different for different fluid elements (labelled by their position 
7, at time zero) ; thus, generally speaking, rCs is a function of both r (i.e. the current 
position of the fluid element) and time. To make the problem manageable, we will 
have to introduce some approximations. 

5.1. Calculation of the position of the critical point 
Consider the bubble collapse from time zero. In the beginning the rates of strain are 
too small to cause the CS events to occur, and so the bubble follows the classical 
solution (5.1). At any given moment the highest strain-rate value is a t  the surface of 
the bubble (see (3.1)), and so the first CS events occur when this value becomes equal 
to E,,, i.e. 

or 

which can be rewritten as 

For large a we obtain Re, x R, (i.e. E,, is reached on the surface almost immediately), 
while for small u and thus Re, < R,, we get (keeping two significant digits only) 

Consider the case of large a first. We see that rcS NN R, for the fluid elements near 
the bubble surface. For the fluid elements far from the bubble surface re, is, of course, 
different ; however, for these fluid elements the ratio r / r ,  is never much different from 
1, and so the polymer chains in these fluid elements can never reach significant 
elongations. To see this most clearly, recall the relation (4.7), 

?-R3 = 6 - R : ,  

which expresses the conservation of mass within a spherical material surface of initial 
radius r,, and consider the case r,, 9 R,. Indeed, only those polymer chains that are 
initially near the bubble surface will be stretched strongly enough to produce 
significant stress: we can show, using (4.7), that in order to ever reach elongation 
6 > 5 (which would be barely enough to produce an observable polymer effect in a 
dilute solution), the polymer charin must reside in a fluid element with r, < 1.03R0, 
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i.e. a t  the start of the collapse it must reside in the immediate vicinity of the bubble 
surface. We have quite generally (for any a )  

and therefore sufficiently high elongations 6 > Emin are possible only for the fluid 
elements with 

the right-hand side of the last relation being 1.03 for Emin = 5. 
Hence for large a a good approximation will be 

r,, = R,, = R, 

for all those polymer chains that can contribute significantly to the effect. 
Consider now the case of small a. The first CS events occur relatively late, when 

R = R,, = 1.2agRO. The subsequent CS events occur when the following relation 
(obtained using (3.1) and (5.1) for R 4 R,) is satisfied: 

kT = 1.63a(E-. (5.7) 

Since R in this relation will be less than R,,, it  is clear that T,, < R,, also (recall that 
R,, can be obtained from the same equation (5.7) applied a t  the surface of the 
bubble). However, we can show that for those polymer chains that can contribute 
significantly to the effect, the difference between T,, and R,, is negligible. 

Using (5.4) and (4.7) and taking into account that T,, < R,,, we obtain 

and thus 

It is then an easy matter to show that sufficiently 
possible only for the fluid elements with 

0 .60d .  3< 1+-, 
R, &in 

high elongations 6 > gmin are 

the right-hand side of the last relation being 1 +0.054at for Emin = 5.  
Now we can find re, for the fluid element with the label ro = (1 + 0.054~2) R,, using 

(5.7) and (4.7). The result is that this rcs is less than R,, by only about 1 %. This also 
means that R a t  the moment when the CS event occurs in this fluid element is only 
slightly less than R,,, and so the polymer chains that underwent the CS before are 
only slightly elongated. This provides an a posteriori justification for using the 
inviscid-fluid kinematics of (5.1) in deriving (5.7). 

Thus, a good approximation for small a will be 

r,, = R,, = 1.2agR0, 

again for all those polymer chains that can contribute significantly to the effect. 
Observe that we found the approximation r,, = R,, to be acceptable for both large 

9 FLM 218 
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and small a. It is then reasonable to assume that it will be acceptable also for a = 
O(1). In  this case Rcs/Ro must be found by solving (5.6) numerically (say, by 
Newton's method) for each given a. Quite possibly, a good interpolation formula for 
Rc,/Ro as a function of a could be devised. We shall not have a need to do this in the 
present work. 

5.2. TheJinal form of the basic equation 
We can now calculate the integral (5.5). The upper limit in this integral should, in 
principle, define the extent of the fluid where the polymer chains are stretched (6 > 
1). However, when the polymer effect is significant, this value is a t  least a few times 
larger than the lower limit R, which means, in view of the very strong dependence 
on r of the integrand, that  we can safely extend the integration to infinity, with the 
error thus introduced being small. 

This very strong dependence on r means also that hardly any error is introduced 
by using the above approximate values for rcs : most of the effect will be determined 
by those polymer chains that are close to  the bubble, and for these chains the above 
expressions for rcs are quite accurate. 

We obtain in the case of small a 

while for large a we have 

The equation describing the bubble collapse finally takes the form (see (2.1) and 
(5.3)) 

where 
12 

ar for small a 
4 for large a ' 

Note that the two expressions for $ have a crossover point a = 0.63. 

Newt,onian viscous term is 
Comparing with (2.2), we observe that the ratio of the polymer term to the 

Let us now put (5.8) in dimensionless form. Using Ro as a lengthscale and T~~~~ as 
a timescale, we obtain (denoting the dimensionless radius of the bubble as 5t; the dot 
will now mean differentiation with respect to  the dimensionless time t )  

(5.9) 

The parameters a and h obviously determine the importance of the polymer effect. 
s Let us look at some numbers. Take pamb-pv = 1 bar; p = I g/cm3; T~ = 3.5 x 
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(the last value corresponding, for example, to Polyox with molecular weight M = 
8 x lo6 g/mol in water, see Ryskin 1987a). Then, assuming that E,, w ~ ; l ,  we obtain 

a x - ,  
3.5 
Ro 

where R, is in centimetres. 
This obviously corresponds to the large-a case in most situations of interest, so 

that 
(5.11) 

In dilute solutions c[7] 4 1.  Consider a typical case: R, = 1 mm, pamb-pv = 1 bar, 
p = 1 g/cm3, 7, = 0.01 g cm-l s-l , c[7] = 0.05 (the last value corresponding, for 
example, to the 20 p.p.m. solution of Polyox mentioned earlier). Then we have A = 

2 x 10-6. 
To estimate an upper limit on A,  it is helpful to consider first the case of a 

cavitation bubble in a Newtonian solvent alone. We have in dimensionless form 

(5.12) 

is, essentially, an inverse of the Reynolds number. For a cavitation-type collapse to 
occur a t  all, p must be less than some critical value, otherwise the bubble diminishes 
in size gradually, & being O(1) or less throughout the process. The critical value of 
,u is about 0.5 (I found this value by integrating numerically (5.12) with different p, 
choosing the latter according to the bisection algorithm). 

Since h = 0.lc[7]pu, we see that A < O.O5c[7] (otherwise no cavitation would occur 
even in the absence of polymer). Clearly, h is unlikely to exceed 0(10-2) in any 
situation of interest. The values of h encountered in experiment are likely to lie in the 
10-6-10-4 range. Nevertheless, the polymer term in (5.9) will play a significant role 
in the dynamics of the bubble collapse, in view of its very fast growth when 9 + 0. 

The different terms in (5.9) have obvious physical meaning: the left-hand side 
describes the inertia of the accelerating liquid, the - 1 term on the right represents 
the pressure difference pnmb-pv, responsible for the initiation of the collapse, and the 
last term gives the polymer effect. It is useful to distinguish four consecutive stages 
of the collapse, and this is done below. But let us first write down, for reference, the 
form taken by the classical inviscid-fluid solution (i.e. with h = 0) in the dimensionless 
variables : 

(5.13) 

(5.14) 

Now the phases of the collapse are: 
(i) Phase I ('speed-up ') : beginning from rest, the liquid is accelerated by the 

pressure difference. Initially, 

22x1; &zoo;  & = - l ;  
9-4 
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the magnitude of the bubble wall velocity then grows roughly linearly with time. The 
polymer effect is negligible, and the inertial forces are balanced by the pressure 
forces. The radius of the bubble decreases substantially during this phase. 

(ii) Phase I1 (‘ collapse ’) : 

The two terms on the left-hand side of (5.9) are both very large and essentially 
balance each other, with both the pressure difference effect and the polymer effect 
being negligible. This is essentially a purely inertial motion ; however, since the 
volume (and thus the mass) of the fast moving liquid in the neighbourhood of the 
bubble is shrinking, its velocity is rapidly increasing (see Batchelor 1967, p. 489). 

Phase I and Phase I1 are described by the classical solution (5.13), (5.14) and are 
the only ones to occur in the absence of polymer. 

(iii) Phase I11 (‘slowdown by polymer’): 9 becomes so small that the polymer 
term becomes comparable with the inertial terms on the left-hand side, and the 
magnitude of 4 goes through a maximum and then falls rapidly ; the pressure forces 
are still small in comparison with either inertial or polymer forces, which balance 
each other. 

(iv) Phase IV (‘polymer-controlled creep’): @ became so small that the inertial 
terms are negligible ; the pressure forces are balanced by the polymer forces, and the 
bubble radius slowly decreases. 

5.3. Approximate analytical solution 
Our task is now to find the approximate form of the solution for Phases 111 and IV. 

(5.15) 
That for Phase IV is easy: 

1 
h 

9 = --gp, 

so if Phase IV begins at  t = t,, when W = W,,, we have from that moment on 

1 6  
W6 h 

= -+-(t-tIv). 
1 - 

The lest expression applies only while the polymer chains are stretched, whereas 
(5.15) shows that, E will approach 0 as B6, and so a t  some point the chains will begin 
to curl back. We shall not consider these phenomena here. 

Phase I11 is described bv 

(5.16) 

This equation can be integrated once if 9 is taken as a new independent variable, 
and g3d2 as a new dependent variable. The result is 

where const is an arbitrary constant. 
For small h this can be matched to the Phase I1 solution, giving 

(5.17) 
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Equation (5.17) thus provides a good approximation to the exact solution in 
Phases I1 and 111, up to the moment when d becomes so small that the neglect of 
the pressure term, which led to (5.16), becomes unjustifiable, i.e. the motion enters 
Phase IV. We can switch over from d given by (5.17) to the ‘creep’ solution (5.15) 
at the moment when they become equal. The corresponding value of 9, denoted a,,, 
should be found by equating the right-hand sides of (5.15) and (5.17) ; however, (5.15) 
is much smaller than each of the two terms in (5.17), and so an approximate value 
of aIV can be found by equating the right-hand side of (5.17) to zero. We thus obtain 

alv x 0.76hA, (5.18) 

and the value of 8 a t  the moment of switchover is then found from (5.15) as 

L@ x -0.15hA. (5.19) 

The approximate solution to the problem of bubble collapse is thus given by the 
classical inviscid-fluid solution (5.13) in the very beginning, then by the expression 
(5.17) till the magnitude of d falls down to the value (5.19), and after that by the 
expression (5.15). 

The absolute value of the bubble wall velocity 8 increases without limit in the 
classical solution (5.13), but has a maximum if polymer is present. It is easy to show 
using (5.17) that the maximum value of Id1 is 

@Imax x 0.63h-A 

and that this maximum is reached when 

(5.20) 

a x Ah. (5.21) 

That is, between W x A+ and 9 x 0.76hft the magnitude of the bubble wall velocity 
drops from 0.63h-4 to 0.15hA. At small h this means that the collapse is abruptly 
arrested after the velocity has reached its peak ; the phenomena associated with the 
final stage of the collapse (strong sound emission, luminescence, etc.) will not occur 
during the very slow Phase IV. 

Note that even for h as small as lo-’ the arrest occurs at gIV x 0.04 - not a 
negligible fraction of the initial size. 

It might seem a t  a first glance that the polymer effect is roughly equivalent to a 
viscosity increase, and one might wonder if similar effects occur in a Newtonian fluid. 
This is not the case, and it is instructive to see why. 

In a Newtonian fluid the collapse is described by (5.12), where the parameter ,u is, 
typically, a small number (for R, = 1 mm in water, with pamb-pv = 1 bar, we have 
,u = 4 x The viscous term then has negligible influence in the beginning (Phases 
I and 11). Consider now an analogue of Phase I11 where the pressure term - 1  can 
be neglected, while the viscous effect may become important. Integrating (5.12) once 
with - 1 dropped, and matching the result to the Phase I1 solution, we obtain 

(5.22) 

That is, the viscous effect appears to accelerate the collapse! This paradoxical 
conclusion becomes more palatable if we recall that (5.22) gives d as a function of 
W and not of time; during the initial start-up (i.e. Phase I) the viscous effect is 
certainly decelerating (see (5.12)), and so while (5.22) predicts a higher magnitude of 
4 for a given W than the inviscid-fluid solution (5.13), this 93 is reached later. 
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FIGURE 1. Bubble radius vs. time. The lengthscale is the initial bubble radius R,, and the time- 
scale is T ~ , , ~ ~ ,  defined in (5.2): _--, h = 0 (inviscid fluid); -, A = h = 
-.-.- , A = 1 0 - 4 .  

0 0.3 0.6 0.9 1.2 
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FIGURE 2. Bubble wall velocity us. time. For symbols see figure 1 

The most important conclusion that can be drawn from (5.22) is that the 
Newtonian viscous effects cannot substantially retard the collapse; The relative 
magnitude of the viscous correction to the classical solution is O(p@) - very small 
near the end of the collapse. Nothing similar to the polymer-induced arrest takes 
place. 

Of course, if p is O(1) or higher, the motion will be retarded very significantly, so 
that 4 is never greater than O(1). But then we are not dealing with cavitation. 
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FIGURE 3. A portion of figure 2, blown-up in time. 

5.4. Numerical solution 
Figures 1 , 2 , 3  present the results of numerical integration of (5.9) for cases h = 

lop4. The classical inviscid-fluid solution ( A  = 0) is also shown for comparison. 
It can be seen that the qualitative description of the solution in terms of four 

distinct phases is confirmed by the computation. The approximate results (5.18), 
(5.19), (5.20), (5.21) are found to agree very well with the corresponding values 
obtained numerically, the error being within about 1 %  for h in the range lo-' to 

6. Polymer effect on the sound emission during the collapse 

cj is a function of time, given by (Lighthill 1978, pp. 19, 33) 
A collapsing bubble radiates sound as a simple (monopole) source, whose strength 

Q = pV = 47cp(2RR2 +RzR), 

where B is the volume of the bubble. Knowing Q, one obtains the sound (excess) 
pressure at  distance r as 

&et 

47cr ' 

Here cjret is the value of Q at an earlier moment, back in time by r/ca,,, where ca, is the 
speed of sound. 

Introducing the dimensionless source strength as 

.9= a 
47cRo(~arnb-~v) ' 

we have 

Figure 4 presents A! ws. time, obtained numerically for h = 

4 = 29922 i- P92. 
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FIGURE 4. Strength of the acoustic monopole due to a collapsing bubble m. time. For symbols 
see (6.1) and figure 1. 

Using (5.17), one finds an estimate for the maximum value of A! as 1.23h-A and for 
W at the moment when this maximum is reached as 0.8lhA. Comparison with the 
numerical solutions for h in the range lo-' to lo-' shows, however, that the above 
numerical factors are somewhat underestimated ; the numerical results are very well 
represented by the relations 

A!,,, x 1.34h-fr a t  9 x 0.85AA. 

The acoustic power output is given by (Lighthill 1978, p. 22) 

integration of this quantity over the time of collapse gives the total acoustic energy 
radiated : 

The ratio of Wac to the potential energy of the bubble available before the collapse, 
M ( P a m b - ~ v ) ?  is 

This ratio must certainly be less than one ; in the studies of cavitation noise it is 
often assumed that it may approach one closely (Ross 1987, p. 218; Baiter 1982). Our 
situation is different: the polymer effect is dissipative in nature, and a straight- 
forward calculation using (5.17) shows that all the potential energy is dissipated into 
heat by the end of Phase 111. While approximate (some dissipation occurs, of course, 
during Phase IV, but this correction is O(hA)), this result is fully consistent with the 
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FIGURE 5. Polymer effect on the spectrum of acoustic radiation from a collapsing bubble. For 
symbols see (6.3) and figure 1. 

approximations that led to (5.17), (5.18), and thus provides a useful check on the 
latter. But this means that the ratio (6.2) must be a rather small number, otherwise 
one has to conclude that some of the basic assumptions of the present theory are 
violated, and a new analysis, taking into account the compressibility of the liquid 
(see Prosperetti 1987), is required. For example, for water and pamb -p ,  = 1 bar, the 
factor in front of the integral in (6.2) is about 0.02, so the integral must not exceed 

Using (5.17), one obtains an estimate for this integral as 0.95A-A; however, the 
numerical results are well represented by a somewhat different expression, namely 

O(10). 

Of primary interest to an experimentalist is the spectrum of the sound emitted by 
a collapsing bubble. Let us define the one-sided power spectral density Y ( f )  as 

Y(f)  = 2 1 w ) l a ,  (6.3) 

where f is the dimensionless frequency (the scale for frequency being 7&), and 
%(f) is the Fourier transform of d ( t ) ,  i.e. 

%(f) = J:a d( t )  e2niftdt. 

Y(f )  was computed using the discrete Fourier transform with subsequent smoothing 
(see Press et al. 1986, p. 423). Figure 5 presents the results for A = 
(only a part of the spectrum is shown since low frequencies are not affected by the 
polymer). The common part of the curves has the slope -0.4 and is associated with 
the Phase I1 velocity-radius relationship 

lop5; 

& -&, 



260 G.  Rydcin 

see Fitzpatrick & Strasberg (1957, p. 253), Blake (1986, p. 408). Without the polymer 
the spectrum would continue asymptotically with this slope until some other, 
neglected here, effects became important (non-condensable gas, compressibility, etc. ; 
see Blake 1986). 

The presence of the polymer results in a rather sharp cutoff of the spectrum, The 
cutoff frequency f,, by the bandwidth theorem (see e.g. Champeney 1973), should 
scale as the inverse of the duration of the pulse in the acoustic pressure near the end 
of the collapse. This duration can be roughly estimated as the change in W during the 
pulse (which scales as Ah), divided by the corresponding velocity (which scales as 
h-h). We thus conclude that f ,  should scale as h-h. 

The numerical results are in agreement with this scaling. If we define f, as a 
frequency such that 9’”(,) is one-half of what it would be in the absence of polymer, 
i.e. of what f-”* asymptote would yield at  f , ,  we find that the numerical results are 
described by f, x 0.52h-h, 

with an error of about 1 YO. 
The above discussion is concerned with the sound emitted by a single bubble. It 

should also be relevant, however, to the phenomenon of cavitation noise, if the 
bubbles’ sizes can be considered uniform: the spectrum of a random sequence of 
identical signals (the shot noise) is essentially the same as that of a signal itself (see 
e.g. Champeney 1973). 

7. Discussion 
To summarize, we found that the polymer additive does not affect the growth of 

a cavitation bubble, and affects the collapse only near its end. The most interesting 
effects of cavitation do happen near the end of the collapse, however, and therefore 
the polymer effect may be quite important. 

The polymer arrests the collapse when the dimensionless bubble radius is about 
(where h is defined by (5.10) or (5.11)) and imposes an upper limit of about A-ft on 
the bubble wall velocity, and of about h-h on the acoustic source strength. The 
polymer also sharply curtails the high-frequency part of the acoustic radiation 
spectrum, with the cutoff frequency being of order h-fr. 

Only those polymer chains that reside initially in the immediate vicinity of the 
bubble surface (within a layer whose thickness is at  most about 3% of the initial 
bubble radius) are responsible for these effects ; the chains initially outside of this 
layer never reach the high elongations necessary to produce large stresses, and, in 
fact, might as well be absent. 

Unfortunately, I am not aware of experimental data that could be directly 
compared to the present results. Ting & Ellis (1974) observed that the growth of a 
bubble was unaffected by the polymer, but they used gas bubbles, as did Shima, 
Tomita & Ohno (1984), who observed shortening ( !) of the collapse upon addition of 
polymer. Spark-generated vapour bubbles were used by Chahine & Fruman (1979), 
while Kezios & Schowalter (1986) produced vapour bubbles by focusing a laser beam 
into a small volume of fluid. In both cases, no effect of polymer additive on the 
dynamics of spherical bubbles was observed. The maximum radius of the bubbles 
was, however, relatively large, and so h could be too small for the effect to be 
detectable without using the most advanced optical techniques (Lauterborn & Vogel 
1984; Lauterborn & Hentschel 1985). 

On the other hand, Hoyt (1977) and Crum & Brosey (1984) observed inhibition of 
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acoustic cavitation by polymer additives. While this is more likely to depend on 
single-bubble dynamics than the similar effect in a flow past a body, etc. (see $ l ) ,  the 
phenomenon as a whole is highly complex and requires separate investigation. Crum 
& Brosey (1984) proposed that the polymer effect is due entirely to changes in the 
surface tension on the vapour-liquid interface, with resulting changes in the 
nucleation process. This explanation is unlikely to hold, however, for the fibre 
suspensions, that were observed to inhibit acoustic cavitation also (Hoyt 1977). 

Measurements of the cavitation noise are equally inconclusive : while Reitzer et al. 
(1985) observed a reduction in the acoustic pressure upon addition of polymer to a 
cavitating flow past a cylinder, in the ultrasonic cavitation damage experiments of 
Tsujino (1987) an increase in the acoustic pressure was observed. In both cases the 
overall phenomena are far too complicated for a direct comparison with the single- 
bubble results. The same is true of the orifice-flow cavitation experiments by Oba 
et al. (1978), who observed both the reduction in the acoustic pressure and the 
downward shift in the principal frequency range upon addition of polymer. 

It appears that further careful experiments will need to be done before a 
quantitative check of the present results becomes possible. 

If a collapsing bubble contains, in addition to vapour, some amount of a 
permanent (non-condensable) gas, this gas is strongly compressed, essentially 
adiabatically, and the resulting temperature and pressure may be so high that free 
radicals are created. Recombination of these free radicals produces luminescence 
(often called sonoluminescence since it was initially observed in the experiments 
where cavitation was generated by high-intensity ultrasound), see, for example, 
W&on & Reynolds (1984), Suslick & Flint (1987). 

The values of the gas temperature and pressure a t  any moment are, respectively, 
T,  &?-3(Y-1) and p,, &?R-3Y, where the subscript ‘ 0 ’ signifies initial conditions, subscript 
‘g ’ stands for gas, and y is the specific-heat ratio. To find the maximum temperature 
and pressure attained, which in turn determine the intensity (and spectrum 2 )  of the 
luminescence, one needs to solve the modified equation (5.9) : 

where w = pgo/(p3amb-pv). This could provide another way of verification of the 
present theory if the polymer effect on luminescence were measurable. 

In  the present work the polymer influence on the fluid dynamics of cavitation was 
considered. It is well known that a very important influence may also be exerted in 
the opposite direction : the ultrasonic degradation of polymers in solution has been 
of interest to workers in polymer science since 1939 (see the review by Basedow & 
Ebert 1977), and the notion that i t  originates in the scission of macromolecules by 
the strong elongational flow during collapse of cavitation bubbles was put forward 
30 years ago by Thomas (1959). Implications of the present theory for a quantitative 
analysis of the ultrasonic degradation will be discussed elsewhere. It should be noted, 
however, that if a significant number of unravelling macromolecules is ruptured in 
a single bubble collapse, this may reduce the overall polymer effect substantially : the 
effect of two resulting half-length chains is less than the effect of the original chain 
by, roughly speaking, a factor of 4, since the polymer-induced stress is proportional 
to the third power of the instantaneous chain length. 

The support of this work by the National Science Foundation (Division of 
Chemical and Thermal Systems) is gratefully acknowledged. 
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